Rangkaian Dioda (Penyearah Gelombang Penuh)

                Penyearah adalah rangkaian elektronika yang berfungsi menyearahkan gelombang arus listrik. Arus listrik yang semula berupa arus bolak-balik (AC) jika dilewatkan rangkaian Penyearah akan berubah menjadi arus searah (DC).
Penyearah gelombang penuh (fullwave rectifier).Kelemahan dari halfwave rectifier adalah arus listrik yang mengalir ke beban hanya separuh dari setiap satu cycle. Hal ini akan menyulitkan dalam proses filtering (penghalusan). Untuk mengatasi kelemahan ini adalah penyearah gelombang penuh.




Rangkaian dasar penyearah gelombang penuh seperti terlihat pada gambar. Menggunakan dua dioda dan satu center tape transformer. Jika titik tengah transformer ditemukan maka tegangan di kedua ujung lilitan sekunder berlawanan fasa 180 derajat. Jadi ketika misalnya tegangan dititik A mengayun kearah positip diukur dari titik tengah lilitan sekunder maka tegangan dititik B mengayun ke arah negatif diukur dari titik yang sama. Mari kita lihat prinsip kerja penyearah gelombang penuh ini.
Pada rangkaian penyearah gelombang penuh ini, selama setengah siklus tegangan sekunder positif, jika digunakan dua dioda seperti pada landasan teori, dioda yang di atas (D1) mengalami prategangan maju dan dioda yang di bawah mengalami prategangan balik. Hal ini menyebabkan arus mengalir melalui dioda yang di atas, tahanan beban, dan setengah lilitan yang di atas. Kemudian selama setengah siklus yang negatif, arus mengalir melalui dioda yang di bawah, tahanan beban, dan setengah belitan yang di bawah.
Karena sifat dioda yang hanya menyearahkan arus pada satu arah tegangan positif saja maka dioda dapat dirangkaikan sedemikian rupa sehingga dapat menghasilkan arus searah. Untuk itu kita lihat rangkaian di bawah ini Yang menjadi dasar dari penyearah adalah sifat dioda yang hanya menyearahkan arus pada satu arah tegangan (arah maju ) saja, sedang pada arah yang berlawanan (arah mundur) arus yang dilewatkan sangat kecil dan diabaikan.
Percobaan penyearah arus gelombang penuh ini bertujuan mengamati bentuk tegangan yang dihasilkan oleh penyearah arus gelombang penuh. . Pada percobaan ini digunakan 4 dioda, sementara pada landasan teori sebenarnya kita dapat menggunakan cukup 2 dioda saja. Meski begitu, keduanya tetap memiliki fungsi sebagai penyearah arus gelombang penuh. hasil penyearahan arus gelombang penuh dimana arus bolak balik diubah menjadi searah sehingga grafik sinusoidalnya menjadi setengah gelombang-setengah gelombang yang rapat. Penggunaan 4 dioda seperti pada percobaan ini merupakan cara lain untuk mendapatkan keluaran gelombang penuh. Penyearah seperti ini dinamakan juga penyearah jembatan.
Penyearah gelombang penuh ini seperti dua penyearah gelombang-setengah yang saling membelakang dengan satu penyearah menangani setengah siklus pertama dan yang lainnya menangani setengah siklus yang kedua. Karena adanya sambungan tengah pada belitan sekunder, masing-masing rangkaian dioda hanya menerima setengah tegangan sekunder.
Rectifier, Filter & Regulator
KONSEP PENYEARAHAN
Penyearah dalam sistem, penyediaan sumber daya DC berfungsi sebagai pengubah arah tegangan atau voltase dari AC ke DC .
Catu daya dc adalah sumber bolak-balik AC ( alternating current ) dari pembangkit tenaga listrik yang diubah menjadi searah DC ( direct current) .
Konsep perubahan AC menjadi DC disebut penyearahan ( rectifiering ).
Ada 3 jenis penyearahan :
  1. Penyearah 1/2 gelombang
  2. Penyearah gelombang penuh
  3. Penyearah gelombangpenuh sistem jembatan
1. Penyearah 1/2 Gelombang
Rangkaian Penyearah 1/2 Gelombang
Tegangan masukan (V in ) adalah sebuah tegangan sinussioda .
Asumsikan sebuah perilaku dioda ideal, pada setengah sinyal positif dioda mendapat pemberian bias maju (forward bias) sehingga menyebabkan setengah sinyal positif muncul pada RL atau beban.
Kondisi ini membuat dioda berlaku sebagai penghantar. Pada setengah putaran negatif, dioda mendapat bias mundur (reverse bias), sehingga dioda dalam kondisi tidak menghantar, oleh karena itu rangkaian memotong sinyal setengah negatif.
Tegangan output (V out ) setengah gelombang merupakan sebuah tegangan DC yang bergerak naik sampai maksimum dan menurun sampai nol, dan tetap nol selama sinyal negatif.
Supaya lebih jelas, lihat Simulasi 1
  • Nilai Sinyal DC setengah Gelombang
Pada prinsipnya, nilai DC setengah gelombang diperoleh dari :
karena nilai dari = 0,318V, sehingga :
  • Frekuensi Keluaran
Frekuansi keluaran sama dengan frekuensi masukan. Tiap-tiap putaran masukan menghasilkan satu putaran tegangan keluaran. Dengan demikian kita dapat menulis :
 
2. Penyearah Gelombang Penuh
Rangkaian Penyearah Gelombang Penuh
Perhatikan grounded center tap pada kumparan sekunder trafo ! Mengapa demikian ?
Rectifier gelombang penuh sama dengan rectifier ½ gelombang sehingga masing-masing rectifier gelombang penuh memiliki tegangan yang sama (equal) dengan setengah tegangan sekunder D1 menghantar ke sinyal setengah positif, dan dioda D2 menghantar ke sinyal setengah negatif. Hasilnya arus beban rectifier mengalir selama setengah sinyal bersama-sama.
Rectifier gelombang penuh berbuat sama dengan dua kali bolak-balik pada rectifier setengah gelombang.
  • Nilai DC atau Nilai Rata-rata
Karena sinyal gelombang penuh mempunyai dua kali sinyal setengah positif, DC atau nilai rata-rata barnilai dua kali nilai dc setengah gelombang.
Pada prinsipnya, nilai dc penyearah gelombang penuh diperoleh dari :
karena nilai dari = 0,636 V, sehingga :
  • Frekuensi Keluaran
Pada sebuah rectifier gelombang penuh, sesuatu tidak biasa terjadi pada frekuensi keluaran. Tegangan saluran AC mempunyai frekuensi 60 Hz. Karena itu, periode masukkannya sama dengan :
 
Karena penyearahan gelombang penuh, periode sinyal gelombang penuh adalah setengah periode masukan :
  sehingga kita dapatkan
Frekuensi sinyal gelombang penuh adalah dua kali frekuensi masukan. Hal ini beralasan karena sebuah keluaran gelombang penuh mempunyai dua kali periode masukan gelombang sinus, hanya saja rectifier gelombang penuh membalikkan masing-masing periode setengah negatif sehingga kita mendapatkan jumlah dua kali periode positif. Akibatnya, adalah penggandaaan frekuensi sehingga :
Gelombang penuh :
3. Penyearah Gelombang Penuh Sistem Jembatan 
Rangkaian Penyearah Gelombang Penuh Sistem Jembatan
Rectifier jembatan menyerupai rectifier gelombang penuh sebab ia memproduksi tegangan keluaran gelombang penuh. Dioda-dioda D1 dan D2 menghantar di atas setengan periode positif dan D3 dan D4 menghantar di atas setengah periode negatif. Sebagai hasilnya arus beban rectifier mengalir selama diantara setengah periode.
 
  • Nilai Rata-rata dan frekuensi Keluaran
Karena sebuah penyearah jembatan menghasikan sebuah keluaran gelombang penuh, persamaan untuk nilai rata-rata dengan frekuensi keluaran sama seperti yang diberikan untuk penyearah gelombang penuh :
dan

Rangkaian Dioda Penyearah Setengah Gelombang

Dioda adalah komponen elektronika berbahan semikonduktor (germanium, silikon) yang mempunyai karakteristik hanya dapat melewatkan arus forward saja dan menahan arus reverse atau sebagai penyearah yang dapat merubah arus bolak – balik mejadi arus searah.

Berikut akan dijelaskan salah satu aplikasi dari fungsi dioda yang dapat kita manfaatkan, yaitu sebagai penyearah setengah gelombang, seperti gambar berikut:

Rangkaian Dioda | Penyearah setengah gelombang

Pada gambar diatas sumber AC(Alterbating Current) atau sumber tegangan bolak balik disearahkan dengan menggunakan dioda, arus hanya dapat mengalir satu arah dibagian katoda sedangkan arus yang lewat di bagian anoda ditahan. perhatikan gelombang yang dihailkan gelombang negatif yang dihilangkan oleh dioda yang hanya melewatkan gelombang positif.

Untuk memperhalus tegangan keluaran, pada rangkaian dapat ditambahkan dengan kapasitor, seperti gambar dibawah ini

Rangkaian Dioda | Penyearah setengah gelombang 
 

Setengah dasar penyearah gelombang sirkuit

Setengah gelombang penyearah sirkuit dapat digunakan di sejumlah aplikasi yang berbeda. Gelombang setengah sirkuit penyearah biasanya menggunakan dioda tunggal. Ini melewati setengah siklus, dan blok yang lain. Dengan cara ini hanya setengah dari siklus yang digunakan, tetapi saat ini hanya dibiarkan mengalir dalam satu arah.
Dioda penyearah setengah gelombang dasar sirkuit
Dioda penyearah setengah gelombang dasar sirkuit
Setengah gelombang penyearah sirkuit sering dapat digunakan dengan transformator jika ingin digunakan untuk menjalankan peralatan dengan cara apapun. Biasanya dalam aplikasi ini input bolak gelombang disediakan melalui trafo. Ini digunakan untuk memberikan tegangan masukan yang diperlukan.
Dioda penyearah setengah gelombang dengan sirkuit transformator
Dioda penyearah setengah gelombang dengan sirkuit transformator

Setengah gelombang penyearah dioda persyaratan

Ketika merancang sebuah rangkaian penyearah setengah gelombang, perlu untuk memastikan bahwa dioda ini mampu memberikan kinerja yang diperlukan. Meskipun ada sangat banyak parameter yang mendefinisikan dioda individu, dan ini mungkin perlu dipertimbangkan untuk desain tertentu, beberapa parameter utama dirinci sebagai berikut:
  • Maju saat ini: Adalah penting bahwa dioda mampu menangani tingkat saat ini saat ini dan puncak rata-rata yang mengalir melalui itu dalam rangkaian penyearah gelombang setengah. Arus akan mencapai puncaknya sebagai akibat dari sirkuit smoothing kapasitor. Sebagai arus hanya saat ini sebagai biaya kapasitor up, saat ini dalam ledakan singkat yang jauh lebih tinggi dari saat ini rata-rata.
  • Tegangan terbalik Peak: Dioda harus mampu andal menahan tegangan terbalik atau terbalik puncak yang muncul di atasnya. Tegangan puncak tidak hanya tegangan output, tetapi lebih tinggi. Nilai puncak tegangan terbalik dioda harus minimal 2 x √ 2 kali tegangan RMS dari input. Hal ini karena output biasanya dihaluskan oleh kapasitor, dan ini akan membawa nilai yang merupakan puncak dari gelombang masukan. Ini akan menjadi √ 2 kali tegangan RMS. Dengan tegangan pada output, bentuk gelombang masukan pada bagian "diblokir" siklus akan jatuh dan mencapai nilai puncak di bagian bawah puncak nilai √ 2 kali RMS. Nilai balik maksimum terlihat di dioda penyearah adalah jumlah dari kedua tegangan.

Transistor

Transistor

Dari Wikipedia bahasa Indonesia, ensiklopedia bebas
Langsung ke: navigasi, cari
Transistor adalah alat semikonduktor yang dipakai sebagai penguat, sebagai sirkuit pemutus dan penyambung (switching), stabilisasi tegangan, modulasi sinyal atau sebagai fungsi lainnya. Transistor dapat berfungsi semacam kran listrik, dimana berdasarkan arus inputnya (BJT) atau tegangan inputnya (FET), memungkinkan pengaliran listrik yang sangat akurat dari sirkuit sumber listriknya.
Transistor through-hole (dibandingkan dengan pita ukur sentimeter)
Pada umumnya, transistor memiliki 3 terminal, yaitu Basis (B), Emitor (E) dan Kolektot (C). Tegangan yang di satu terminalnya misalnya Emitor dapat dipakai untuk mengatur arus dan tegangan yang lebih besar daripada arus input Basis, yaitu pada keluaran tegangan dan arus output Kolektor.
Transistor merupakan komponen yang sangat penting dalam dunia elektronik modern. Dalam rangkaian analog, transistor digunakan dalam amplifier (penguat). Rangkaian analog melingkupi pengeras suara, sumber listrik stabil (stabilisator) dan penguat sinyal radio. Dalam rangkaian-rangkaian digital, transistor digunakan sebagai saklar berkecepatan tinggi. Beberapa transistor juga dapat dirangkai sedemikian rupa sehingga berfungsi sebagai logic gate, memori dan fungsi rangkaian-rangkaian lainnya.


Cara kerja transistor

Dari banyak tipe-tipe transistor modern, pada awalnya ada dua tipe dasar transistor, bipolar junction transistor (BJT atau transistor bipolar) dan field-effect transistor (FET), yang masing-masing bekerja secara berbeda.
Transistor bipolar dinamakan demikian karena kanal konduksi utamanya menggunakan dua polaritas pembawa muatan: elektron dan lubang, untuk membawa arus listrik. Dalam BJT, arus listrik utama harus melewati satu daerah/lapisan pembatas dinamakan depletion zone, dan ketebalan lapisan ini dapat diatur dengan kecepatan tinggi dengan tujuan untuk mengatur aliran arus utama tersebut.
FET (juga dinamakan transistor unipolar) hanya menggunakan satu jenis pembawa muatan (elektron atau hole, tergantung dari tipe FET). Dalam FET, arus listrik utama mengalir dalam satu kanal konduksi sempit dengan depletion zone di kedua sisinya (dibandingkan dengan transistor bipolar dimana daerah Basis memotong arah arus listrik utama). Dan ketebalan dari daerah perbatasan ini dapat diubah dengan perubahan tegangan yang diberikan, untuk mengubah ketebalan kanal konduksi tersebut. Lihat artikel untuk masing-masing tipe untuk penjelasan yang lebih lanjut.

Jenis-jenis transistor

BJT symbol PNP.svg PNP JFET symbol P.png P-channel
BJT symbol NPN.svg NPN JFET symbol N.png N-channel
BJT
JFET
Simbol Transistor dari Berbagai Tipe
Secara umum, transistor dapat dibeda-bedakan berdasarkan banyak kategori:
  • Materi semikonduktor: Germanium, Silikon, Gallium Arsenide
  • Kemasan fisik: Through Hole Metal, Through Hole Plastic, Surface Mount, IC, dan lain-lain
  • Tipe: UJT, BJT, JFET, IGFET (MOSFET), IGBT, HBT, MISFET, VMOSFET, MESFET, HEMT, SCR serta pengembangan dari transistor yaitu IC (Integrated Circuit) dan lain-lain.
  • Polaritas: NPN atau N-channel, PNP atau P-channel
  • Maximum kapasitas daya: Low Power, Medium Power, High Power
  • Maximum frekuensi kerja: Low, Medium, atau High Frequency, RF transistor, Microwave, dan lain-lain
  • Aplikasi: Amplifier, Saklar, General Purpose, Audio, Tegangan Tinggi, dan lain-lain

[sunting] BJT

BJT (Bipolar Junction Transistor) adalah salah satu dari dua jenis transistor. Cara kerja BJT dapat dibayangkan sebagai dua diode yang terminal positif atau negatifnya berdempet, sehingga ada tiga terminal. Ketiga terminal tersebut adalah emiter (E), kolektor (C), dan basis (B).
Perubahan arus listrik dalam jumlah kecil pada terminal basis dapat menghasilkan perubahan arus listrik dalam jumlah besar pada terminal kolektor. Prinsip inilah yang mendasari penggunaan transistor sebagai penguat elektronik. Rasio antara arus pada koletor dengan arus pada basis biasanya dilambangkan dengan β atau h_{FE}. β biasanya berkisar sekitar 100 untuk transistor-transisor BJT.

FET

FET dibagi menjadi dua keluarga: Junction FET (JFET) dan Insulated Gate FET (IGFET) atau juga dikenal sebagai Metal Oxide Silicon (atau Semiconductor) FET (MOSFET). Berbeda dengan IGFET, terminal gate dalam JFET membentuk sebuah diode dengan kanal (materi semikonduktor antara Source dan Drain). Secara fungsinya, ini membuat N-channel JFET menjadi sebuah versi solid-state dari tabung vakum, yang juga membentuk sebuah diode antara grid dan katode. Dan juga, keduanya (JFET dan tabung vakum) bekerja di "depletion mode", keduanya memiliki impedansi input tinggi, dan keduanya menghantarkan arus listrik dibawah kontrol tegangan input.
FET lebih jauh lagi dibagi menjadi tipe enhancement mode dan depletion mode. Mode menandakan polaritas dari tegangan gate dibandingkan dengan source saat FET menghantarkan listrik. Jika kita ambil N-channel FET sebagai contoh: dalam depletion mode, gate adalah negatif dibandingkan dengan source, sedangkan dalam enhancement mode, gate adalah positif. Untuk kedua mode, jika tegangan gate dibuat lebih positif, aliran arus di antara source dan drain akan meningkat. Untuk P-channel FET, polaritas-polaritas semua dibalik. Sebagian besar IGFET adalah tipe enhancement mode, dan hampir semua JFET adalah tipe depletion mode.


Transistor sambungan dwikutub


Transistor sambungan dwikutub
Transistor-photo.JPG
Simbol
Icon of Bipolar transistor.png
Tipe Komponen aktif
Kategori Transistor
Penemu John Bardeen, Walter Houser Brattain dan William Shockley (Desember 1947)
Pembuatan pertama Laboratorium Telepon Bell
Komponen sejenis FET
Kemasan 3 kaki (basis, kolektor, emitor)
Transistor pertemuan dwikutub (BJT) adalah salah satu jenis dari transistor. Ini adalah peranti tiga-saluran yang terbuat dari bahan semikonduktor terkotori. Dinamai dwikutub karena operasinya menyertakan baik elektron maupun lubang elektron, berlawanan dengan transistor ekakutub seperti FET yang hanya menggunakan salah satu pembawa. Walaupun sebagian kecil dari arus transistor adalah pembawa mayoritas, hampir semua arus transistor adalah dikarenakan pembawa minoritas, sehingga BJT diklasifikasikan sebagai peranti pembawa-minoritas.

Perkenalan

NPN BJT dengan pertemuan E–B dipanjar maju dan pertemuan B–C dipanjar mundur
Transistor NPN dapat dianggap sebagai dua diode adu punggung tunggal anode. Pada penggunaan biasa, pertemuan p-n emitor-basis dipanjar maju dan pertemuan basis-kolektor dipanjar mundur. Dalam transistor NPN, sebagai contoh, jika tegangan positif dikenakan pada pertemuan basis-emitor, keseimbangan di antara pembawa terbangkitkan kalor dan medan listrik menolak pada daerah pemiskinan menjadi tidak seimbang, memungkinkan elektron terusik kalor untuk masuk ke daerah basis. Elektron tersebut mengembara (atau menyebar) melalui basis dari daerah konsentrasi tinggi dekat emitor menuju konsentrasi rendah dekat kolektor. Elektron pada basis dinamakan pembawa minoritas karena basis dikotori menjadi tipe-p yang menjadikan lubang sebagai pembawa mayoritas pada basis. Daerah basis pada transistor harus dibuat tipis, sehingga pembawa tersebut dapat menyebar melewatinya dengan lebih cepat daripada umur pembawa minoritas semikonduktor untuk mengurangi bagian pembawa yang bergabung kembali sebelum mencapai pertemuan kolektor-basis. Untuk memastikannya, ketebalan basis dibuat jauh lebih rendah dari panjang penyebaran dari elektron. Pertemuan kolektor-basis dipanjar terbalik, jadi sedikit sekali injeksi elektron yang terjadi dari kolektor ke basis, tetapi elektron yang menyebar melalui basis menuju kolektor disapu menuju kolektor oleh medan pada pertemuan kolektor-basis.

Pengendalian tegangan, arus dan muatan

Arus kolektor-emitor dapat dipandang sebagai terkendali arus basis-emitor (kendali arus) atau tegangan basis-emitor (kendali tegangan). Pandangan tersebut berhubungan dengan hubungan arus-tegangan dari pertemuan basis-emitor, yang mana hanya merupakan kurva arus-tegangan eksponensial biasa dari diode pertemuan p-n.[1] Penjelasan fisika untuk arus kolektor adalah jumlah muatan pembawa minoritas pada daerah basis.[1][2][3] Model mendetail dari kerja transistor, model Gummel–Poon, menghitung distribusi dari muatan tersebut secara eksplisit untuk menjelaskan perilaku transistor dengan lebih tepat.[4] Pandangan mengenai kendali-muatan dengan mudah menangani transistor-foto, dimana pembawa minoritas di daerah basis dibangkitkan oleh penyerapan foton, dan menangani pematian dinamik atau waktu pulih, yang mana bergantung pada penggabungan kembali muatan di daerah basis. Walaupun begitu, karena muatan basis bukanlah isyarat yang dapat diukur pada saluran, pandangan kendali arus dan tegangan biasanya digunakan pada desain dan analisis sirkuit. Pada desain sirkuit analog, pandangan kendali arus sering digunakan karena ini hampir linier. Arus kolektor kira-kira \beta_F kali lipat dari arus basis. Beberapa sirkuit dasar dapat didesain dengan mengasumsikan bahwa tegangan emitor-basis kira-kira tetap, dan arus kolektor adalah beta kali lipat dari arus basis. Walaupun begitu, untuk mendesain sirkuit BJT dengan akurat dan dapat diandalkan, diperlukan model kendali-tegangan (sebagai contoh model Ebers–Moll)[1]. Model kendali-tegangan membutuhkan fungsi eksponensial yang harus diperhitungkan, tetapi jika ini dilinierkan, transistor dapat dimodelkan sebagai sebuah transkonduktansi, seperti pada model Ebers–Moll, desain untuk sirkuit seperti penguat diferensial menjadi masalah linier, jadi pandangan kontrol-tegangan sering diutamakan. Untuk sirkuit translinier, dimana kurva eksponensiak I-V adalah kunci dari operasi, transistor biasanya dimodelkan sebagai terkendali tegangan dengan transkonduktansi sebanding dengan arus kolektor.

Tundaan penghidupan, pematian dan penyimpanan

Transistor dwikutub mengalami beberapa karakteristik tundaan ketika dihidupkan dan dimatikan. Hampir semua transistor, terutama transistor daya, mengalami waktu simpan basis yang panjang sehingga membatasi frekuensi operasi dan kecepatan pensakelaran. Salah satu cara untuk mengurangi waktu penyimpanan ini adalah dengan menggunakan penggenggam Baker.

Parameter alfa (α) dan beta (β) transistor

Perbandingan elektron yang mampu melintasi basis dan mencapai kolektor adalah ukuran dari efisiensi transistor. Pengotoran cerat pada daerah emitor dan pengotoran ringan pada daerah basis menyebabkan lebih banyak elektron yang diinjeksikan dari emitor ke basis daripada lubang yang diinjeksikan dari basis ke emitor. Penguatan arus moda tunggal emitor diwakili oleh βF atau hfe, ini kira-kira sama dengan perbandingan arus DC kolektor dengan arus DC basis dalam daerah aktif-maju. Ini biasanya lebih besar dari 100 untuk transistor isyarat kecil, tapi bisa sangat rendah, terutama pada transistor yang didesain untuk penggunaan daya tinggi. Parameter penting lainnya adalah penguatan arus tunggal-basis, αF. Penguatan arus tunggal-basis kira-kira adalah penguatan arus dari emitor ke kolektor dalam daerah aktif-maju. Perbandingan ini biasanya mendekati satu, di antara 0,9 dan 0,998. Alfa dan beta lebih tepatnya berhubungan dengan rumus berikut (transistor NPN):
\alpha_T = \frac{I_{\text{C}}}{I_{\text{E}}}
\beta_F = \frac{I_{\text{C}}}{I_{\text{B}}}
\beta_F = \frac{\alpha_{T}}{1 - \alpha_{T}}\iff \alpha_{T} = \frac{\beta_F}{\beta_F+1}

Struktur

Irisan transistor NPN yang disederhanakan
Kepingan transistor NPN frekuensi tinggi KSY34, basis dan emitor disambungkan melalui ikatan kawat
BJT terdiri dari tiga daerah semikonduktor yang berbeda pengotorannya, yaitu daerah emitor, daerah basis dan daerah kolektor. Daerah-daerah tersebut adalah tipe-p, tipe-n dan tipe-p pada transistor PNP, dan tipe-n, tipe-p dan tipe-n pada transistor NPN. Setiap daerah semikonduktor disambungkan ke saluran yang juga dinamai emitor (E), basis (B) dan kolektor (C). Basis secara fisik terletak di antara emitor dan kolektor, dan dibuat dari bahan semikonduktor terkotori ringan resistivitas tinggi. Kolektor mengelilingi daerah emitor, membuat hampir tidak mungkin untuk mengumpulkan elektron yang diinjeksikan ke daerah basis untuk melarikan diri, membuat harga α sangat dekat ke satu, dan juga memberikan β yang lebih besar. Irisan dari BJT menunjukkan bahwa pertemuan kolektor-basis jauh lebih besar dari pertemuan kolektor-basis. Transistor pertemuan dwikutub tidak seperti transistor lainnya karena biasanya bukan merupakan peranti simetris. Ini berarti dengan mempertukarkan kolektor dan emitor membuat transistor meninggalkan moda aktif-maju dan mulai beroperasi pada moda terbalik. Karena struktur internal transistor dioptimalkan untuk operasi moda aktif-maju, mempertukarkan kolektor dan emitor membuat harga α dan β pada operasi mundur jauh lebih kecil dari harga operasi maju, seringkali α bahkan kurang dari 0.5. Buruknya simetrisitas terutama dikarenakan perbandingan pengotoran pada emitor dan kolektor. Emitor dikotori berat, sedangkan kolektor dikotori ringan, memungkinkan tegangan panjar terbalik yang besar sebelum pertemuan kolektor-basis bobol. Pertemuan kolektor-basis dipanjar terbalik pada operasi normal. Alasan emitor dikotori berat adalah untuk memperbesar efisiensi injeksi, yaitu perbandingan antara pembawa yang diinjeksikan oleh emitor dengan yang diinjeksikan oleh basis. Untuk penguatan arus yang tinggi, hampir semua pembawa yang diinjeksikan ke pertemuan emitor-basis harus datang dari emitor. Perubahan kecil pada tegangan yang dikenakan membentangi saluran basis-emitor menyebabkan arus yang mengalir di antara emitor dan kolektor untuk berubah dengan signifikan. Efek ini dapat digunakan untuk menguatkan tegangan atau arus masukan. BJT dapat dianggap sebagai sumber arus terkendali tegangan, lebih sederhana dianggap sebagai sumber arus terkendali arus, atau penguat arus, dikarenakan rendahnya impedansi pada basis. Transistor-transistor awal dibuat dari germanium tetapi hampir semua BJT modern dibuat dari silikon. Beberapa transistor juga dibuat dari galium arsenid, terutama untuk penggunaan kecepatan tinggi.

NPN

Simbol NPN BJT.
Struktur dasar transistor NPN
NPN adalah satu dari dua tipe BJT, dimana huruf N dan P menunjukkan pembawa muatan mayoritas pada daerah yang berbeda dalam transistor. Hampir semua BJT yang digunakan saat ini adalah NPN karena pergerakan elektron dalam semikonduktor jauh lebih tinggi daripada pergerakan lubang, memungkinkan operasi arus besar dan kecepatan tinggi. Transistor NPN terdiri dari selapis semikonduktor tipe-p di antara dua lapisan tipe-n. Arus kecil yang memasuki basis pada tunggal emitor dikuatkan di keluaran kolektor. Dengan kata lain, transistor NPN hidup ketika tegangan basis lebih tinggi daripada emitor. Tanda panah dalam simbol diletakkan pada kaki emitor dan menunjuk keluar (arah aliran arus konvensional ketika peranti dipanjar maju).

PNP

Jenis lain dari BJT adalah PNP.
Simbol PNP BJT.
Struktur dasar transistor PNP
Transistor PNP terdiri dari selapis semikonduktor tipe-n di antara dua lapis semikonduktor tipe-p. Arus kecil yang meninggalkan basis pada moda tunggal emitor dikuatkan pada keluaran kolektor. Dengan kata lain, transistor PNP hidup ketika basis lebih rendah daripada emitor. Tanda panah pada simbol diletakkan pada emitor dan menunjuk kedalam.

Transistor dwikutub pertemuan-taksejenis

Jalur dalam transistor dwikutub pertemuan-taksejenis. Penghalang menunjukkan elektron untuk bergerak dari emitor ke basis, dan lubang untuk diinjeksikan kembali dari basis ke emitor.
Transistor dwikutub pertemuan-taksejenis (HBT) adalah sebuah penyempurnaan BJT sehingga dapat menangani isyarat frekuensi sangat tinggi hingga beberapa ratus GHz. Sekarang sering digunakan dalam sirkuit ultracepat, terutama sistem RF.[5][6] Transistor pertemuan-taksejenis mempunyai semikonduktor yang berbeda untuk tiap unsur dalam transistor. Biasanya emitor dibuat dari bahan yang memiliki celah-jalur lebih besar dari basis. Ilustrasi menunjukkan perbedaan celah-jalur memungkinkan penghalang lubang untuk menginjeksikan lubang kembali ke basis (diperlihatkan sebagai Δφp), dan penghalang elektron untuk menginjeksikan ke basis (Δφn). Susunan penghalang ini membantu mengurangi injeksi pembawa minoritas dari basis ketika pertemuan emitor-basis dipanjar terbalik, dan dengan demikian mengupansi arus basis dan menaikkan efisiensi injeksi emitor. Injeksi pembawa menuju ke basis yang telah diperbaiki memungkinkan basis untuk dikotori lebih berat, menghasilkan resistansi yang lebih rendah untuk mengakses elektrode basis. Dalam BJT tradisional, atau BJT pertemuan-sejenis, efisiensi injeksi pembawa dari emitor ke basis terutama dipengaruhi oleh perbandingan pengotoran di antaran emitor dan basis, yang berarti basis harus dikotori ringan untuk mendapatkan efisiensi injeksi yang tinggi, membuat resistansioya relatif tinggi. Sebagai tambahan, pengotoran basis yang lebih tinggi juga memperbaiki karakteristik seperti tegangan mula dengan membuat basis lebih sempit. Pembedaan tingkat komposisi dalam basis, misalnya dengan menaikkan jumlah germanium secara progresif pada transistor SiGe, menyebabkan gradien dalam celah-jalur di basis netral (ditunjukkan sebagai ΔφG), memberikan medan terpatri di dalam yang membantu pengangkutan elektron melewati basis. Komponen alir tersebut membantu pengangkutan sebaran normal, menaikkan respons frekuensi transistor dengan memperpendek waktu pemindahan melewati basis. Dua HBT yang paling sering digunakan adalah silikon-germanium dan aluminium arsenid, tetapi jenis semikonduktor lain juga bisa digunakan untuk struktur HBT. Struktur HBT biasanya dibuat dengan teknik epitaksi, seperti epitaksi fase uap logam-organik dan epitaksi sinar molekuler.

Daerah operasi

Batas operasi aman transistor, biru: batas IC maksimum, merah: batas VCE maksimum, ungu: batas daya maksimum
Transistor dwikutub mempunyai lima daerah operasi yang berbeda, terutama dibedakan oleh panjar yang diberikan:
  • Aktif-maju (atau aktif saja): pertemuan emitor-basis dipanja maju dan pertemuan basis-kolektor dipanjar mundur. Hampir semua transistor didesain untuk mencapai penguatan arus tunggal emitor yang terbesar (\beta_F) dalam moda aktif-maju. in forward-active mode. Dalam keadaan ini arus kolektor-emitor beberapa kali lipat lebih besar dari arus basis.
  • Aktif-mundur (atau aktif-terbalik atau terbalik): dengan membalik pemanjaran pada moda aktif-maju, transistor dwikutub memasuki moda aktif-mundur. Pada moda ini, daerah emitor dan kolektor bertukar fungsi. Karena hampir semua BJT didesain untuk penguatan arus moda aktif-maju yang maksimal, \beta_F pada moda terbalik beberapa kaki lipat lebih rendah. Moda transistor ini jarang digunakan, dan hanya diperhitungkan untuk kondisi kegagalan dan untuk beberapa jenis logika dwikutub. Tegangan tembus panjar terbalik pada basis mungkin lebih rendah pada moda ini.
  • Jenuh: dengan semua pertemuan dipanjar maju, BJT memasuki moda jenuh dan memberikan konduksi arus yang besar dari emitor km kolektor. Moda ini berkorespondensi dengan logika hidup, atau sakelar yang tertutup.
  • Putus: pada keadaan putus, pemanjaran bertolak belakang dengan keadaan jenuh (semua pertemuan dipanjar terbalik). Arus yang mengalir sangat kecil, dengan demikian berkorespondensi dengan logika mati, atau sakelar yang terbuka.
  • Tembusan bandang
Walaupun daerah-daerah tersebut didefinisikan dengan baik untuk tegangan yang cukup besar, mereka bertumpang tindih jika tegangan panjar yang dikenakan terlalu kecil (kurang dari beberapa ratus milivolt).

Transistor dalam moda aktif-maju

Transistor BJT NPN dalam moda aktif-maju
Diagram disamping menunjukkan transistor NPN disambungkan ke dua sumber tegangan. Untuk membuat transistor menghantar arus yang kentara dari C ke E, V_{\text{BE}} harus diatas harga minimum yang sering disebut sebagai tegangan potong. Tegangan potong biasanya kira-kira 600 mV untuk BJT silikon pada suhu ruang, tetapi ini juga bisa berbeda-beda bergantung pada tipe transistor dan teknik pemanjaran. Tegangan yang dikenakan ini membuat pertemuan P-N bagian bawah berubah menjadi hidup dan memungkinkan aliran elektron dari emitor ke basis. Pada moda aktif, medan listrik yang terdapat di antara basis dan kolektor (disebabkan oleh V_{\text{CE}}) akan menyebabkan mayoritas elektron untuk melintasi pertemuan P-N bagian atas menuju ke kolektor untuk membentuk arus kolektor I_{\text{C}}. Elektron yang tertinggal bergabung kembali dengan lubang yang merupakan pembawa mayoritas pada basis sehingga menimbulkan arus melalui sambungan basis untuk membentuk arus basis, I_{\text{B}}. Seperti yang diperlihatkan pada diagram, arus emitor I_{\text{E}}, adalah arus transistor total, yang merupakan penjumlahan arus saluran lainnya (I_{\text{E}} = I_{\text{B}} + I_{\text{C}}). Pada diagram, tanda panah menunjukkan arah dari arus konvensional, aliran elektron mengalir berlawanan dengan tanda panah. Pada moda aktif, perbandingan dari arus kolektor-ke-basis dengan arus basis disebut dengan penguatan arus DC. Pada perhitungan, harga dari penguatan arus DC disebut dengan h_{\text{FE}}, dan harga penguatan arus AC disebut dengan h_{\text{fe}}. Walaupun begitu, ketika cakupan frekuensi tidak diperhitungkan, simbol \beta sering digunakan. Perlu diperhatikan bahwa arus emitor berhubungan dengan V_{\text{BE}} secara eksponensial. Pada suhu ruang, peningkatan V_{\text{BE}} sebesar kurang-lebih 60 mV meningkatkan arus emitor dengan faktor 10 kali lipat. Kerena arus basis kurang lebih sebanding dengan arus kolektor dan emitor, ini juga berubah dengan fungsi yang sama. Untuk transistor PNP, secara umum cara kerjanya adalah sama, kecuali polaritas tegangan panjar yang dibalik dan fakta bahwa pembawa muatan mayoritas adalah lubang elektron.
Transistor PNP dalam moda aktif-maju

 Transistor PNP moda aktif

Sejarah

Transistor pertama
Transistor dwikutub titik-sentuh diciptakan pada Desember 1947[7] di Bell Telephone Laboratories oleh John Bardeen dan Walter Brattain dibawah arahan William Shockley. Versi pertemuan diciptakan pada tahun 1948[8]. Setelah menjadi peranti pilihan untuk berbagai rangkaian, sekarang penggunaannya telah banyak digantikan oleh FET, baik pada sirkuit digital (oleh CMOS) ataupun sirkuit analog (oleh MOSFET dan JFET).

Transistor germanium

Transistor germanium sering digunakan pada tahun 1950-an dan 1960-an. Karena transistor jenis ini mempunyai tegangan potong yang rendah, membuatnya cocok untuk beberapa penggunaan isyarat tegangan rendah. Transistor ini memiliki kemungkinan lebih besar untuk mengalami thermal runaway.

Teknik produksi

Berbagai motoda untuk memproduksi transistor pertemuan dwikutub telah dikembangkan[9].

Penggunaan

BJT tetap menjadi peranti pilihan untuk beberapa penggunaan, seperti sirkuit diskrit, karena tersedia banyak jenis BJT, transkonduktansinya yang tinggi serta resistansi kekuasannya yang tinggi dibandingkan dengan MOSFET. BJT juga dipilih untuk sirkuit analog khusus, terutama penggunaan frekuensi sangat tinggi (VHF), seperti sirkuit frekuensi radio untuk sistem nirkabel. Transistor dwikutub dapat dikombinasikan dengan MOSFET dalam sebuah sirkuit terpadu dengan menggunakan proses BiCMOS untuk membuat sirkuit inovatif yang menggunakan kelebihan kedua tipe transistor.

Sensor suhu

Karena ketergantungan suhu dan arus pada tegangan panjar maju pertemuan basis-emitor yang dapat dihitung, sebuah BJT dapat digunakan untuk mengukur suhu dengan menghitung perbedaan dua tegangan pada dua arus panjar yang berbeda dengan perbandingan yang diketahui.[23].

Pengubah logaritmik

Karena tegangan basis-emitor berubah sebagai fungsi logaritmik dari arus basis-emitor dan kolektor-emitor, sebuah BJT dapat juga digunakan untuk menghitung logaritma dan anti-logaritma. Sebuah diode sebenarnya juga dapat melakukan fungsi ini, tetapi transistor memberikan fleksibilitas yang lebih besar.

Kerawanan

Pemaparan transistor ke radiasi menyebalan kerusakan radiasi. Radiasi menyebabkan penimbunan molekul cacat di daerah basis yang berlaku sebagai pusat penggabungan kembali. Hasil dari pengurangan umur pembawa minoritas menyebabkan transistor kehilangan penguatan.
BJT daya beresiko mengalami moda kegagalan yang dinamakan dobrakan sekunder. Pada moda kegagalan ini, beberapa titik pada kepingan semikonduktor menjadi panas dikarenakan arus yang mengalirinya. Bahang yang ditimbulkan menyebabkan pembawa lebih mudah bergerak. Sebagai hasilnya, bagian terpanas dari kepingan semikonduktor menghantarkan lebih banyak lagi arus. Proses regeneratif ini akan terus berlanjut hingga transistor mengalami kegagalan total atau pencatu daya mengalami kegagalan.